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Abstract

Looback options are path dependent contingent claims whose 
payoffs depend on the extrema of the underlying asset price over a 
certain time interval. In this note we compare the performance of 
two Monte Carlo techniques to price lookback options, a crude 
Monte Carlo estimator and Antithetic variate estimator. We find that 
the Antithetic estimator performs better under a variety of 
performance measures.
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Resumen

Las opciones Looback son contratos que exhiben dependencia de 
sendero y cuyo ingreso bruto depende de los valores extremos del 
activo subyacente en un intervalo de tiempo determinado. En esta 
nota comparamos el desempeño de dos técnicas de Monte Carlo:
estimador directo de Monte Carlo y estimador de variables 
antitético. Nuestros resultados muestran que el estimador antitético 
ofrece un  mejor desempeño de acuerdo a distintas medidas de 
desempeño.

Palabras clave: Monte Carlo, simulaciones, opciones.

Introduction

Options on stocks were first traded on an organized exchange in 
1973. Since then, there has been a dramatic growth in option 
markets. Options are now traded on many different exchanges 
throughout the world. Huge volumes of options are also traded over 
the counter by banks and other financial institutions. The underlying 
assets include stocks, stock indices, foreign currencies and debt 
instruments.

Part of this growth in the derivatives market it is due to the 
increasing importance of non-standard option contracts, that is, 
options that are not a vanilla put or call. These kinds of contracts 
have been developed by banks and financial institutions at an 
increasing rate to meet the needs of their clients. An important class 
within these contracts is path dependent options. A path dependent 
option is an option whose payoff at exercise or expiry depends, in 
some nontrivial way, on the past history of the underlying asset price 
as well as its spot price at exercise or expiry. 

Lookback options are an example of this kind of financial 
instruments. They are path dependent options whose payoffs depend 
on the maximum or minimum attained over a certain period of time 

put gives 
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the right to the holder to sell a stock at a certain date in the future for 
a price equal to the maximum price of the stock during the life of the 
option. On the other hand, a standard European lookback call is the 
right to buy at a historical lowest price over a certain period. These 
kinds of options look like a plain vanilla put or call with the terminal 
security price replaced by either the maximum or the minimum price 
during the life of the contract. Such options give the holder an 
extremely advantageous payoff. Using lookback options, one can 
design a strategy enabling the investor to buy at the low and sell at 
the high. They are therefore relatively expensive. Goldman, Sossin 
and Gatto  (1979) note that although in a perfect market such options
would not expand the investment opportunity set in a real market 
they may present some peculiar attractive features such as the 
minimization of regret and maybe more importantly the opportunity 
to take advantage of  either special information or skill on behalf of 
the trader.

Work on standard lookback call options was first done by 
Goldman et al. (1979), Goldman, Sosin, and Shepp (1979), and 
Conze and Viswanathan (1991). All of the above studies show that 
in the Black-Scholes framework it is possible to obtain closed form 
solutions for the value of European lookback options. This 
framework assumes that the underlying asset follows a geometric 
Brownian motion which in turn implies that the underlying asset is 
lognormally distributed. 

The purpose of this technical note is to implement two Monte 
Carlo techniques to obtain a numerical solution to the problem of 
pricing a Lookback option. We choose the Black-Scholes framework 
so that we can compare both techniques with the theoretical price. 
The techniques proposed are simple and flexible, though, in the 
sense that can be easily modified to accommodate different process 
for the underlying stock price. We use three alternative measures to 
compare the performance of these techniques. Section 2 of this note 
provides a brief description of option pricing and motivates the use 
of Monte Carlo methods in this context. Section 3 discusses the 
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methodology. Section 4 analyzes results. Section 5 gives the 
conclusions and discusses further applications of the method

Option Pricing: a Review

price and time. Therefore, virtually every option pricing model starts 
by postulating a process for the stock price dynamics. Two 
reasonable assumptions regarding the process are that both the 
variance and the expected return in a short period of time are 
independent of the stock price. In other words, an investor is just as 
uncertain as to his percentage return when the stock price is $100 as 
when it is $10.  A model that captures these characteristics and that 
it is mathematically tractable is the Geometric Brownian Motion. 
Which can written as

)1,0(~ Ndtdzwheresdzusdtds

Here ds denotes the change in the stock price in the next 
infinitesimal moment. Also, the first term of the equation represents 
the expected return or drift of the process and the second term is the 
stochastic component reflecting the uncertainty about future prices. 
The next steps to price an option following the PDE approach 
follow:

1) Obtain the dynamic equation for the option price (This is done 

resulting equation is structurally similar to the equation for the 
stock prices and shares the same stochastic term.

2) Combine both equations in a way that the stochastic term 
disappears. The resulting portfolio of a stock and an option is 
therefore riskless and its price should be equal to the price of 
riskless instrument. 
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3) The solution to the PDE derived in 2) is the price of the option.

For the purpose of this note, the important thing to notice is that the 
equation in derived in the second step does not contain the 
(unobservable) required return on the stock, which leads to the so 
called risk neutral approach to option valuation. This approach can 
be implemented in the following way:

- Replace the drift in the process with the risk-free rate 
(observable).

- Calculate the expected payoff using the distribution implied 
by the new process.

- Discount the resulting value at the risk-free rate.

For the lookback case the risk neutral valuation formula can be 
written as:

rT

Tt
eTptpEL )]()(max[

0

where L denotes the lookback price and p(t) is the stock price at time 
t. Note that under the new process the distribution of future prices is 
lognormal with an expected value given by:

rt
t eppE 0)(

where r is the risk-free rate and is distributed standard normal.
The objective is to estimate the equation for L using the 

Monte Carlo method.
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Methodology

The two techniques implemented in this note are the Crude Monte 
Carlo and the Antithetic Variates. To set up the Crude Monte Carlo,
we take the following steps:

- Simulate a path for future prices according to the 
lognormal distribution.

- Choose a maximum price from the path generated.
- Letting m = number of iterations,  the Crude Monte Carlo 

estimator is given by:
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To obtain the Antithetic Variates estimator, for each simulated path, 
another is generated by reversing the sign of each of the IID standard 
normal on which the price path is based. The Antithetic estimator is 
given by:
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Note that the second estimator doubles the number of iterations by 
generating a second sample based on the first one. Further, the 
second sample is negatively correlated with the first one. Because of 
those two characteristics the antithetic estimator variance should be 
smaller than the crude.   

To compare the performance of both estimators, we use three 
alternative measures: 

Efficiency Measure. 22 / ac nanc where nc and  na denote the 

CPU time of the Crude and Antithetic estimators, 
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respectively. A ratio greater that 1 would indicate that the 
Antithetic estimator is more efficient.
Accuracy Measure. Standard error of the estimate, since this 
measure is inversely proportional to the number of iterations, 
we expect a priori that the Antithetic estimator would be 
more accurate. 
Deviation from theoretical value. Since in the particular case 
of the Lookback option there is close-form solution, we also 
compare the estimated values with the formula values.    

Results

A comparison of the Crude Monte Carlo to the Antithetic estimator 
is provided in table 1. M denotes the number of iterations. The 
parameter values for r and sigma are set equal to 5% and 20%, 
respectively. N denotes sample size, which is the number of prices 
generated in each iteration. Pc, Pa and Pf are the Crude Monte Carlo, 
the Antithetic and the formula prices. For all the simulations, the 
ratio of the standard error of Antithetic estimator (SEa) to the 
standard error of the Crude Monte Carlo (SEc) is around 
0.035/0.086=0.407, a reduction of about 60%. In comparison, a 
doubling of the number of replications from m to 2m for the Crude 
Monte Carlo estimator would yield a ratio of 1/ 2 = 0.707, only a 
29% reduction. Therefore, the negative correlation induced by the 
sampling procedure accounts for a good portion of the reduction in 
variance. Now, since the generation of the second sample does not 
require an additional simulation it is not surprising that the 
Antithetic method turns out to be more efficient.

The difference between the estimated prices and the formula 
price arises from two sources: sampling variation and the 
discreteness of the simulated prices. The former source of 
discrepancy is controlled by the number of iterations, while the latter 
source is controlled by the number of prices simulated in each 
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replication. A comparison between tables I and II below shows that 
for this experiment the number simulated prices plays a more 
important role. Note also that the Crude estimator attains the 
minimum difference when n=2000 and m=5000. According to the 
deviation measure both estimators systematically underprice the 
lookback option. This is to be expected because we are selecting a 
maximum over k prices, where k goes from 0 to n, as n increases the 
maximum is likely to increase as well. Therefore, the formula price, 
which is based on a continuos time price, will almost always exceed 
the simulation price, which is discretized. 

Table 1
(m=5000, r=0.05, sigma=0.20, Pf=5.71)

N Pc Pa Sec SEa Effic. Pf-Pc Pf-Pa
250
500
1000
2000
5000

5.279
5.612
5.443
5.653
5.629

5.409
5.506
5.536
5.570
5.632

0.086
0.088
0.086
0.086
0.089

0.035
0.037
0.036
0.035
0.037

3.738
5.921
7.334
6.021
2.907

0.431
0.098
0.267
0.057
0.081

0.301
0.204
0.174
0.140
0.078

Table 2
(m=10000, r=0.05, sigma=0.20)

N Pc Pa Sec SEa Effic. Pf-Pc Pf-Pa
250
500
1000
2000
5000

5.364
5.519
5.606
5.618
5.553

5.343
5.463
5.581
5.624
5.623

0.060
0.062
0.062
0.062
0.060

0.025
0.025
0.026
0.025
0.025

6.055
5.950
6.044
5.494
5.012

0.346
0.191
0.104
0.092
0.157

0.367
0.247
0.129
0.086
0.087

However, this observation does not imply that the Monte Carlo 
estimators are inferior to the closed-form solution, since real prices 
are discrete not continuos. Therefore, the difference simply 
highlights the importance of discretization in the pricing of options.
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Conclusion and Extensions

The Monte Carlo method represents an alternative to the numerical 
methods employed in Option pricing. One advantage of the method 
is that it is very flexible with regard to the distribution of stock 
prices. Changing the underlying distribution merely involves using a 
different process for generating the random variates employ in the 
method. Furthermore, the method is perhaps unique in the sense that 
the distribution used to generate prices need not have a closed- form 
analytic expression. This opens the possibility of using empirical 
distribution to value options. An area worth exploring since the 
empirical evidence on stock prices distributions is not conclusive1 .
Furthermore, the method also provides measures of accuracy. 
However, the advantages do not come without price. Some 
limitations to this approach should be emphasized.  The direct 
Monte Carlo approach presented here would require a ¨Monte Carlo 
on Monte Carlo¨ algorithm to be applied to American options. 
Consider a simulated path and a point (P(t), t) on that path. To value 
an American option one must decide if it is optimal to exercise at 
that point. This in turn requires evaluation of the risk neutral formula 
and therefore requires continuation from (P(t), t) on many paths. 
Thus this direct Monte Carlo simulation of the American options 
requires a set of continuously branching paths, which is 
computationally intractable. Several recent methods have been 
proposed to deal with theses difficulties, though. For example, 
Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (1999), 
introduced a new approach to Monte Carlo valuation by replacing 
the future expectation required by the risk neutral approach by a 
least squares interpolation. The method has been shown to work well 
on a good selection of examples, but it still needs validation for 
more complicated examples, such as American Asian options with a 

1See for example Carr et al. (2002) or Login (1996).
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moving window over which the average is taken. In contrast, Rogers 
(2002) propose an approach which makes no attempt to approximate 
an exercise policy, but instead gives an upper bound to the true price 
by means of Martingale optimization. The main difficulty with this 
approach lies in the method for choosing the Martingale in order to 
get a good approximation. 
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